
JVC

SERVICE MANUAL

DIGITAL STILL CAMERA

GC-QX3U

SPECIFICATIONS

Dimensions : 108 (W) mm x 64 (H) mm x 57 (D) mm

(4-5/16" x 2-9/16" x 2-1/4")

: 4.0 W (when the LCD screen is off) Power consumption 5.6 W (when the LCD screen is on)

> : Approx. 290 g (0.64 lbs) (without a Memory card and battery)

: DC 5 V == Power source

Weight

: Built-in Flash

Auto/red-eve prevention/forced/disabled

Recommended distance for flash : 2.3 m to 5.2 m

: 2.0 inch, cool polysilicon TFT, 200,000 pixels

: SmartMediaTM 3.3V (up to 64MB) Storage media CCD

: 3.34 million pixels (3.24 million valid pixels), 1/1.8" square pixels, primary color filter, interlace scan CCD

: 2032 x 1536 (TIFF 9.5MB, FINE 1MB, STD 700KB) 1024 x 768 (TIFF 2.4MB, FINE 500KB, STD 300KB) Recording pixels

640 x 480 (TIFF 980KB, FINE 150KB, STD 80KB)

Focal distance : 7.5 mm to 17.5 mm

(equivalent to 37mm to 86 mm on a 35 mm still camera)

Lens : 2.3X optical zoom lens

Video : 160 x 120, 20 seconds (80KB - 200KB) JVC original : Exif Ver. 2.1 (DCF compliant), TIFF (Uncompressed), Recording format

DPOF-compatible

Sensitivity : 80/160/320 (ISO compliant) Iris value (F value) : F2.8/3.8, 5.6, 8, 11 Exposure control : Program AE, iris priority AE : +/-2EV (0.5EV steps) **Exposure compensation**

Minimum subject distance : Approx. 2 cm to 50 cm (in Macro mode)

Light measurement system : Multi, spot Shutter type : Electronic shutter

Shutter speed : Auto (Program AE: 1/8 - 1/750, Iris priority AE: 1/4 - 1/750)

White balance : Auto/Manual (*, *, *, *, MWB)

Focus : Auto/Manual Self timer : 1 second, 8 seconds

Photo quality : 3 modes (STANDARD/FINE/NO COMP.) Number of storable photos : 2032 x 1536: approx. 10/8/0

(with an 8MB Memory card, STANDARD/FINE/NO COMP.) 1024 x 768: approx. 43/32/3 640 x 480: approx. 87/65/9

Battery

Printer connector : Output for optional printer

VIDEO output connector : Two-pole plug, 3.5 mm diameter (NTSC)

: Lithium ion battery

: Mini-USB connector Digital output connector

AC Power Adapter/Charger AA-V37

Power requirement

U.S.A. and Canada : AC 120 V ~, 60 Hz

: AC 110 V − 240 V ∼, 50 Hz/60 Hz Other countries

: 23 W Power consumption

Output

Charge : DC 3.6 V ==, 0.77 A Camera : DC 5.0 V ==, 1.5 A : 0°C to 40°C (32°F to 104°C) Operating temperature

[when charging: 10°C to 35°C (50°F to 95°F)]

: 68 (W) mm x 38 (H) mm x 110 (D) mm Dimensions (2-11/16" x 1-1/2" x 4-3/8")

: Approx. 230 g (0.51 lbs) (without a DC cord) Weight

E. & O. E. Design and specifications subject to change without notice.

TABLE OF CONTENTS

Sect	tion Title	e	Page	Section	Tit	tle	Page
Impo	ortant Safety Precautions						
1. DI	SASSEMBLY			4. PARTS LIST			
1.1	BEFORE ASSEMBLY AND DI	SASSEMBLY	1-1		D ACCESSORY	ASSEMBLY <m1></m1>	4-1
	.1 Precautions			4.2 OP BLOCK A	SSEMBLY <m3< td=""><td>></td><td> 4-2</td></m3<>	>	4-2
	.2 Assembly and disassembly			4.3 FINAL ASSEM	ИВLY <m2></m2>		4-3
	.3 Disconnection of Connecto			4.4 ELECTRICAL	PARTS LIST		4-6
	TOOL AND EQUIPMENTS REQU			MAIN BOAR	ASSEMBLY <	01>	4-6
1.2.	.1 Tools required for adjustme	ents	1-2	CCD BOARD	ASSEMBLY <0	2>	4-11
	DISASSEMBLY /ASSEMBLY			MONI REG B	OARD ASSEME	3LY <03>	4-12
1.3.	.1 Disassembly flow chart		1-2	JACK BOARD	ASSEMBLY <	04>	4-14
1.3.	.2 Disassembly method (I)		1-3	STOROBE FL	ASH BOARD A	SSEMBLY <05>	4-15
1.3.	.3 Disassembly method (II)	<op unit=""></op>	1-6				
1.3.	.4 OP BLOCK Lens composit	ison	1-7	5. AC POWER ADA	APTER (AA-V3	71.1\	
1.4	IC BLOCK DIAGRAM		1-8				E 1
1.4.	.1 IC 1002 (CXD2497R)		1-8				
	.2 IC 2001 (CDS/AGL)						
	.3 IC 7302 (CXA3268AR))						
	.4 LCD (ACX301AK)					RD ASSEMBLY <91>	
1.4.	.5 CCD (ICX262AQ)		1-12	MAIN AND T	LINIMAL BOA	ND ASSLIVIDLI (812	5-5
	ECTRICAL ADJUSTMENT						
2.1	ELECTRICAL ADJUSTMENT						
2.1.							
	.2 Test instruments required for	•					
	.3 Required test equiqment						
	.4 Setup (LCD ADJUSTMENT						
	.5 Setup (CCD ADJUSTMEN)						
2.2	Setup with patch cords and ji	g connector cables	2-3				
	HARTS AND DIAGRAMS	4	0.1				
	ES OF SCHEMATIC DIAGRAN						
	CUIT BOARD NOTES BOARD INTERCONNECTION						
3.1				SOFTWARE SECTION	FOR Windows®	SOFTWARE SECTION I	FOR Macintosh®
3.2	MAIN (SYSCON) SCHEMATIC MAIN (DSP96) SCHEMATIC I			Operating Environment		Operating Environment	
3.4	MAIN (DSP97) SCHEMATIC I			The host computer that runs the		The host computer that runs the	
3.5	MAIN (G/A JCY0148) AND	JIAGNAIVI	3-9	operating environment must sa conditions.		operating environment must sat conditions.	isfy the following
3.5		MATIC DIAGRAM	2_11				
3.6	MAIN (F/Z MDA) AND	IVIATIC DIAGNAMI	5-11	USB Driver 1. Microsoft® Windows® 98/W	indows® 98 Second	USB Driver 1. USB-compatible computer (i	iMac™, iBook™,
5.0		TIC DIAGRAM	2_12	Edition, pre-installed	indows 50 Second	Power Mac™ G3/G4, Power	r Book™ G3, etc.)
3.7	MAIN (CDS AGC A/D AND AI		0 12	 Available USB port CD-ROM drive 		2. Mac OS 8.5.1/Mac OS 8.6/N	лас OS 9.0
5.7		M	3_13			JVC Video Decoder 1. Power PC 603e/120MHz or	factor
3.8	MAIN (STROBE CONTROL A		0 10	Video Player 1. CPU: Intel® Pentium® 200M	Hz class or higher	2. Mac OS 7.6.1 or later	iastei
0.0		M	3-14	 Microsoft® Windows® 95/W Display capability of 65,536 		 QuickTime 3.0 or later Minimum RAM requirement 	· 32MB
3.9	CCD SCHEMATIC DIAGRAM			4. CD-RÓM drive		Minimum hard disk space re	
	MONI REG (MONITOR) SCH			 Minimum RAM requirement Minimum hard disk space re 	t: 32MB equirement: 1MB	* Macintosh® is a registered trac	lemark of Apple
	MONITOR REG (DC/DC) SCH			,	'	Computer. * Other trademarks are property	of their
	JACK (VIDEO OUT/USB/PRINTE			* The system requirements info guarantee that provided softw	are applications will	owners.	
		SCHEMATIC DIAGRAM .	3-19	work on all personal compute requirements.	ers meeting those	* If you use Macintosh® which of port, use an optional flash pat	
3.13	VOLTAGE CHARTS			* Microsoft®, Windows® are eitl	ner registered	adapter, etc. For details on the	operating en
	MAIN CIRCUIT BOARD (YB1			trademarks or trademarks of N in United States and/or other		ment of these devices, contact manufacturers.	tine dealers or
	MAIN CIRCUIT BOARD (YB1			* Intel®, Pentium® are registered			
3.16	MONITOR REG CIRCUIT BOX	ARD (YB10283-01-02)	3-35	corporation. * Other trademarks are property	of their respective		
	MONITOR REG CIRCUIT BOX			owners. * If you use Windows® 95 or a	•		
	JACK CIRCUIT BOARD (YB10			which does not have a USB p	ort, use an optional		
	JACK CIRCUIT BOARD (YB10			flash path, conversion card a details on the operating envir			
	CCD CIRCUIT BOARD (YB10			devices, contact the dealers of	r manufacturers.		
3 21	CCD CIRCUIT BOARD (VR10	283-01-04)	3-11				

3.22 STOROBE FLASH CIRCUIT BOARD (YB10283-01-02) 3-45 3.23 STOROBE FLASH CIRCUIT BOARD (YB10283-01-04) 3-46 3.25 POWER SUPPLY BLOCK DIAGRAM 3-49 3.26 OP BLOCK SCHEMATIC DIAGRAM <REFERENCE> .. 3-51

SCHEMATIC DIAGRAM <REFERENCE>.......... 3-52

3.27 OPERATION UINT

Important Safety Precautions

Prior to shipment from the factory, JVC products are strictly inspected to conform with the recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Precautions during Servicing

- Locations requiring special caution are denoted by labels and inscriptions on the cabinet, chassis and certain parts of the product. When performing service, be sure to read and comply with these and other cautionary notices appearing in the operation and service manuals.
- Parts identified by the ▲ symbol and shaded () parts are critical for safety.

Replace only with specified part numbers.

Note: Parts in this category also include those specified to comply with X-ray emission standards for products using cathode ray tubes and those specified for compliance with various regulations regarding spurious radiation emission.

- Fuse replacement caution notice.
 Caution for continued protection against fire hazard.
 Replace only with same type and rated fuse(s) as specified.
- 4. Use specified internal wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulation Tape
- 3) Spacers
- 5) Barrier

- 2) PVC tubing
- 4) Insulation sheets for transistors
- When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.) wrap ends of wires securely about the terminals before soldering.

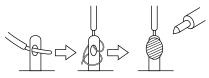


Fig.1

- 7. Observe that wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.)
- Check that replaced wires do not contact sharp edged or pointed parts.
- 9. When a power cord has been replaced, check that 10-15 kg of force in any direction will not loosen it.

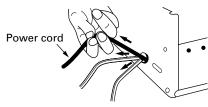


Fig.2

- 10. Also check areas surrounding repaired locations.
- 11. Products using cathode ray tubes (CRTs) In regard to such products, the cathode ray tubes themselves, the high voltage circuits, and related circuits are specified for compliance with recognized codes pertaining to X-ray emission. Consequently, when servicing these products, replace the cathode ray tubes and other parts with only the specified parts. Under no circumstances attempt to modify these circuits. Unauthorized modification can increase the high voltage value and cause X-ray emission from the cathode ray tube.

12. Crimp type wire connector

In such cases as when replacing the power transformer in sets where the connections between the power cord and power transformer primary lead wires are performed using crimp type connectors, if replacing the connectors is unavoidable, in order to prevent safety hazards, perform carefully and precisely according to the following steps.

- 1) Connector part number: E03830-001
- 2) **Required tool**: Connector crimping tool of the proper type which will not damage insulated parts.
- 3) Replacement procedure
 - (1) Remove the old connector by cutting the wires at a point close to the connector.

Important: Do not reuse a connector (discard it).

Fig 3

(2) Strip about 15 mm of the insulation from the ends of the wires. If the wires are stranded, twist the strands to avoid frayed conductors.

Fig.4

(3) Align the lengths of the wires to be connected. Insert the wires fully into the connector.

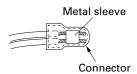
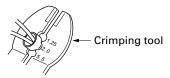



Fig.5

(4) As shown in Fig.6, use the crimping tool to crimp the metal sleeve at the center position. Be sure to crimp fully to the complete closure of the tool.

ig.6

(5) Check the four points noted in Fig.7.

Not easily pulled free Crimped at approx. center of metal sleeve Conductors extended

Wire insulation recessed more than 4 mm

more than 4 m

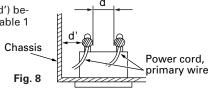
Ι

Fig.7

Safety Check after Servicing

Examine the area surrounding the repaired location for damage or deterioration. Observe that screws, parts and wires have been returned to original positions, Afterwards, perform the following tests and confirm the specified values in order to verify compliance with safety standards.

1. Insulation resistance test


Confirm the specified insulation resistance or greater between power cord plug prongs and externally exposed parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

2. Dielectric strength test

Confirm specified dielectric strength or greater between power cord plug prongs and exposed accessible parts of the set (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.). See table 1 below.

3. Clearance distance

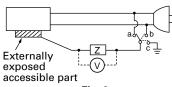
When replacing primary circuit components, confirm specified clearance distance (d), (d') between soldered terminals, and between terminals and surrounding metallic parts. See table 1 below.

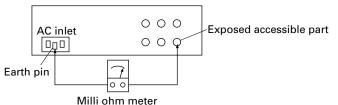
4. Leakage current test

Confirm specified or lower leakage current between earth ground/power cord plug prongs and externally exposed accessible parts (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.).

Measuring Method : (Power ON)

Insert load Z between earth ground/power cord plug prongs and externally exposed accessible parts. Use an AC voltmeter to measure across both terminals of load Z. See figure 9 and following table 2.




Fig. 9

5. Grounding (Class I model only)

Confirm specified or lower grounding impedance between earth pin in AC inlet and externally exposed accessible parts (Video in, Video out, Audio in, Audio out or Fixing screw etc.).

Measuring Method:

Connect milli ohm meter between earth pin in AC inlet and exposed accessible parts. See figure 10 and grounding specifications.

Grounding Specifications

Region	Grounding Impedance (Z)
USA & Canada	Z ≦ 0.1 ohm
Europe & Australia	Z ≦ 0.5 ohm

Fi	a	- 1	1

AC Line Voltage	Region	Insulation Resistance (R)	Dielectric Strength	Clearance Distance (d), (d')
100 V	lanan	R ≧ 1 MΩ/500 V DC	AC 1 kV 1 minute	d, d' ≧ 3 mm
100 to 240 V	Japan	R ≤ 1 IVI22/500 V DC	AC 1.5 kV 1 miute	d, d' ≧ 4 mm
110 to 130 V	USA & Canada	1 M $\Omega \le R \le 12$ M $\Omega/500$ V DC	AC 1 kV 1 minute	d, d' ≧ 3.2 mm
110 to 130 V 200 to 240 V	Europe & Australia	R ≧ 10 MΩ/500 V DC	AC 3 kV 1 minute (Class II) AC 1.5 kV 1 minute (Class I)	$d \ge 4 \text{ mm}$ $d' \ge 8 \text{ mm (Power cord)}$ $d' \ge 6 \text{ mm (Primary wire)}$

 Table 1
 Specifications for each region

AC Line Voltage	Region	Load Z	Leakage Current (i)	a, b, c
100 V	Japan	o\/\\\\\	i ≦ 1 mA rms	Exposed accessible parts
110 to 130 V	USA & Canada	0.15 μF	i ≦ 0.5 mA rms	Exposed accessible parts
110 to 130 V	Europe & Australia	o	$i \le 0.7 \text{ mA peak}$ $i \le 2 \text{ mA dc}$	Antenna earth terminals
220 to 240 V	Europe & Australia	ο\\\\\	i ≦ 0.7 mA peak i ≦ 2 mA dc	Other terminals

Table 2 Leakage current specifications for each region

Note: These tables are unofficial and for reference only. Be sure to confirm the precise values for your particular country and locality.

SECTION 1 DISASSEMBLY

1.1 BEFORE ASSEMBLY AND DISASSEMBLY

1.1.1 Precautions

- 1. Be sure to remove the power supply unit prior to mounting and soldering of parts.
- 2. When connecting and disconnecting the connectors, be careful not to damage the wire.
- 3. When replacing chip parts (especially IC parts), desolder completely first (to prevent peeling of the pattern).
- 4. Tighten screws properly during the procedures.

 Unless specified otherwise, tighten screws at a torque of 0.1N•m (1.0 kgf•cm).

CAUTION!! RISK OF ELECTRIC SHOCK

When disassembling the unit, electric hazards may occur in some cases if the capacitor for strobe emission (STROBE board C6512) has been charged. Therefore be also very careful when performing repairs and inspections.

It is recommended that operations be carried out after waiting for more than ten minutes with the power supply removed or after discharging the capacitor forcibly.

Discharge the capacitor according to <NOTE 2> on Page 1-3.

C6512 is located behind the STROBE board.

PRECAUTIONS ON HANDLING THE LITHIUM SECONDARY BATTERY

This unit is equipped with a coin type lithium secondary battery.

Improper handling of this battery may cause heat to be generated, damage, fires, or leakage. Always follow the precautions below.

- ① Do not short-circuit, disassemble, distort, nor heat the battery.
- 2 Load the battery with its + and poles connected correctly.
- 3 Do not solder the battery itself.
- When replacing parts, also refer to the numbers listed in the Parts List of the manual.
- Do not store the battery in direct sunlight and hot and humid places.
- When replacing the battery, handle it with care and do not attempt to hold it with tweezers as it may short-circuit.
- When disposing the battery, wind tape around the terminal to insulate the battery, and dispose the battery according to the method prescribed.

1.1.2 Assembly and disassembly

STEP	PART NAME	FIG. NO.	POINT		NOTE
1	FRONT CASE REAR CASE	Fig		Remove screws 2(115), 3(156), 4(114), 1(116)	
2	OPERATION UNIT	1-2-1	Remove the Connector	Remove screws 3 (116) 2 (115)	NOTE 1
† (1)	(2)	(3)	(4)		† (5)

- Indicate the disassembly steps. When assembling, perform in the reverse order of these steps. This number corresponds to the number in the disassembly diagram.
- (2) : Indicates the name of disassembly/assembly parts.
- (3) : Indicates the number in the disassembly diagram.
- (4) : Indicates parts and points such as screws, washers, springs which must be removed during disassembly/ assembly.

Lock (L), soldering (SD), shield, connector, etc.

Note: The encircled numbers indicate the order for disassembling the cabinet parts.

The screw numbers indicate the disassembling order.

 \leftrightarrow :Wire

⇔:Flat wire

⇒ :Board to Bord Connector

[Example]

- (115) = Remove the parts No 115 screw.
- (SD1) = Desoldering at the point SD1.
- (a) = Disconnect the connector/ML (a) .
- (5) : Precautions on disassembly/assembly.

1.1.3 Disconnection of Connectors (Wires)

Connector

Pull both ends of the connector in the arrow direction, remove the lock and disconnect the flat wire.

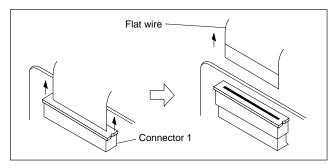


Fig. 1-1-1 Connector 1

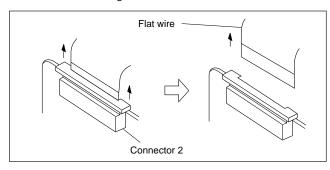


Fig. 1-1-2 Connector 2

Extend the locks in the direction of the arrow for unlocking and then pull out the wire. After removing the wire, immediately restore the locks to their original positions because the locks are apt to come off the connector.

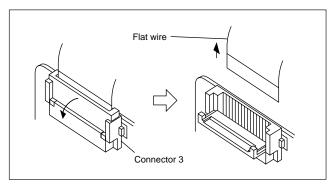


Fig. 1-1-3 Connector 3

B-B connector

Pull the board by both the sides in the direction of the arrow for disconnecting the B-B connector.

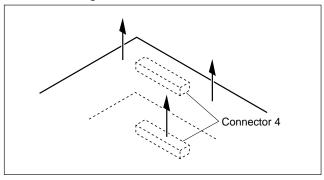
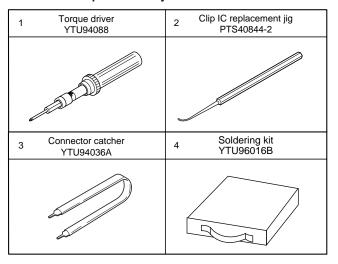
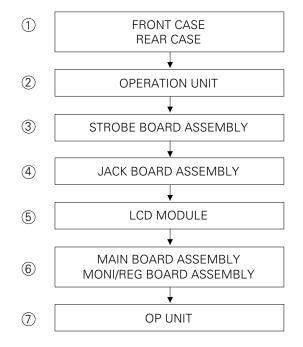



Fig. 1-1-4 Connector 4

1.2 TOOLS AND EQUIPMENTS REQUIRED FOR ADJUSTMENTS

1.2.1 Tools required for adjustments


1.3 DISASSEMBLY/ASSEMBLY OF CABINET PARTS

1.3.1 Disassembly flow chart

The following flow chart shows the steps for disassembling the cabinet parts. To assemble, perform the steps of the flow chart in the reverse order.

Note: The encircled numbers indicate the order for disassembling the cabinet parts.

The screw numbers indicate the disassembling order.

1.3.2 Disassembly method (I)

STEP	PART NAME	FIG. NO.	POINT		NOTE
1)	FRONT CASE REAR CASE	Fig		Remove screws 2 (115), 3 (156), 4 (157), 1 (154)	
2	OPERATION UNIT	1-3-1	Remove the Connector ① MAIN CN4001 ← OPERATION UNIT Remove the TOP COVER	Remove screws 3 (116) 2 (115)	Note 1
3	STROBE BOARD ASSEMBLY	Fig 1-3-1	Remove the Connector	Remove screw 1 (114)	Note 1 Note 2
	JACK BOARD ASSEMBLY		Remove the Connector ② MAIN CN5501 ← JACK CN101 ③ LCD MODULE (BL) ← JACK CN701	Remove screws 2 (114) (e) (SD3), (f) (SD4), (g) (SD5)	
4	LCD MODULE	Fig	Remove the Connector ♠ MAIN CN3002 ← LCD MODULE (LCD) Remove from the Frame Assy Remove from the LCD Holder	Remove screws 2 (114)	Note 1 Note 3 Note 4
(5)	MAIN BOARD ASSEMBLY MONI/REG BOARD ASSEMBLY	1-3-2	Remove the Connector ① MAIN CN501 ← OP UNIT ② MAIN CN3001 ← MON/REG CN9001 ③ MON/REG TL9001 ← Frame Assy Remove the PWB HOLDER	①(SD1) Remove screws 2 (114)	Note 1
6	OP UNIT	Fig 1-3-3	Remove from the Frame Assy	Remove screws 3 (117)	

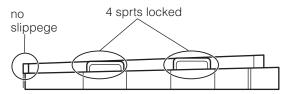
CONNEC- TOR/HL	NO.OF PINS	CON	NECTION
C	80	MAIN Board CN3001	← MONI/REG Board CN9001
(d)	1	MONI/REG Board TL9001	\longleftrightarrow main frame (RED)
e	1	JACK Board TP3	←→ MAIN FRAME (BROWN)
f	1	JACK Board TP2	←→ MONI/REG Board J9001 (BLACK)
9	1	JACK Board TP1	←→ MONI/REG Board J9002 (RED)
h	22	MAIN Board CN501	⇔ OP UNIT
<u> </u>	2	MAIN Board CN502	<→ OP UNIT
k	24	MAIN Board CN3002	\iff LCD MODULE (LCD)
m	2	JACK Board CN701	⇔ LCD MODULE (BL)
n	14	MAIN Board CN6601	← STROBE Board CN6501
(P)	38	MAIN Board CN5501	⇔ JACK Board CN101
(P)	28	MAIN Board CN2001	← CCD Board CN1001
(1)	12	MAIN Board CN4001	⇔ OPERATION UNIT
S	1	STROBE UNIT WIRE (ORANGE)	$\longleftrightarrow {\tt STROBE\ Board\ J6501\ (Through\ hole)}$
t	1	STROBE UNIT WIRE (BROWN)	\longleftrightarrow STROBE Board J6502 (Through hole)
Ü	1	STROBE UNIT WIRE (RED)	\longleftrightarrow STROBE Board J6503 (Through hole)
V	1	STROBE UNIT WIRE (BLACK)	\longleftrightarrow STROBE Board J6504 (Through hole)
w	1	STROBE UNIT WIRE (Red, Thin wire)	← STROBE Board J6505 (Through hole)
X	1	STROBE UNIT WIRE (BLACK, Thin wire)	←→ STROBE Board J6506 (Through hole)

Note 1

Destination of connectors.

Note: Three kinds of double-arrows in connection tables respectively show kinds of connector/wires.

→ : Board to Board connector


 $\iff : \textit{ Flat wire } \\ \iff : \textit{ Wire }$

Note 2

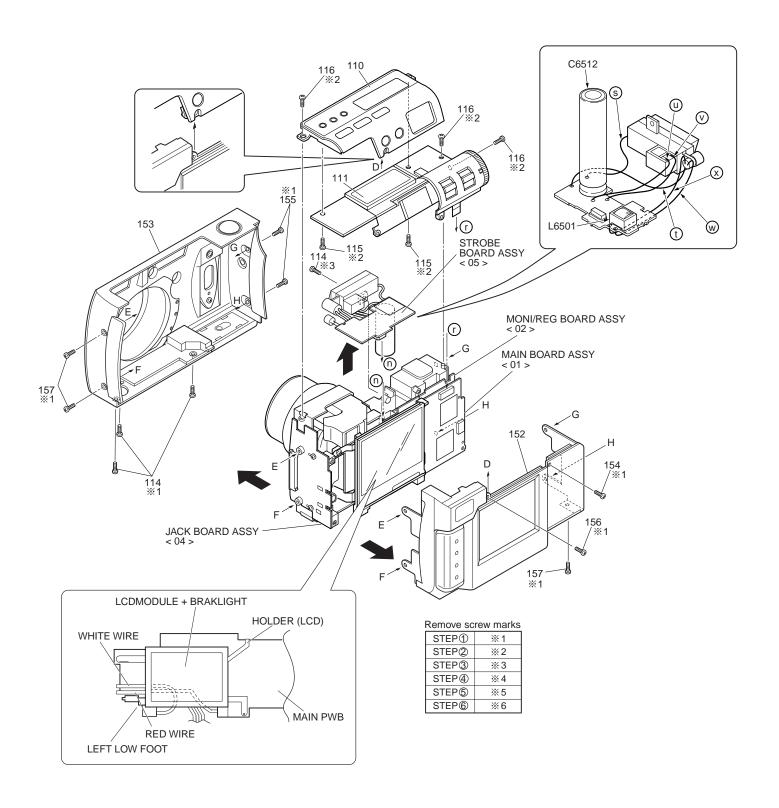
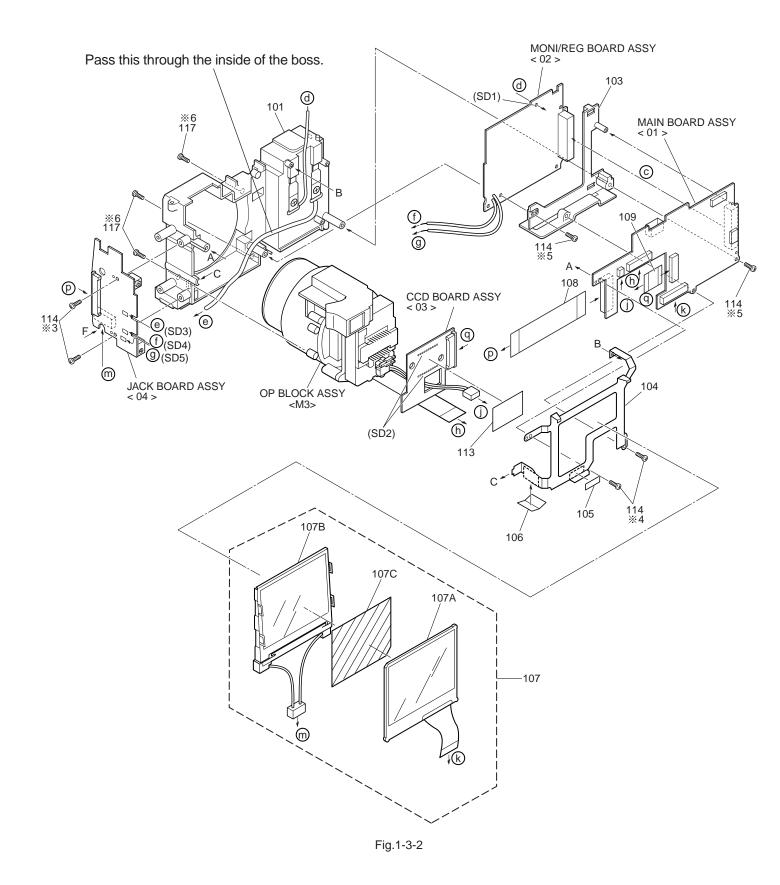
Be careful from electric shock hazard because the capacitor (C6512) for the strobe is exposed. Be sure to positively discharge the capacitor if it is energized by short-circuiting a resistor (10 - 22 k) connected at both capacitor terminals. Please be very careful when doing this job.

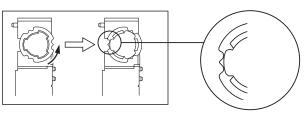
Note 3

Make sure that there is no slippage between the LCD panel and the backlight, the four spots are locked with hooks securely, and the sheet is placed in the correct direction.

Note 4

Both the stripe pattern and the non-slippage (notch) on the sheet surface are to be in the direction as illustrated.

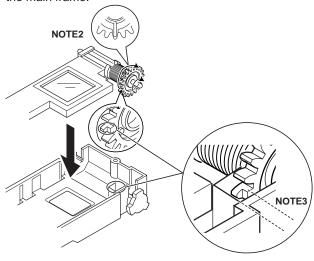




Fig.1-3-1

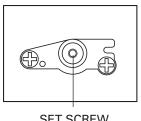
1.3.3 Disassembly method (II) <OP Unit>

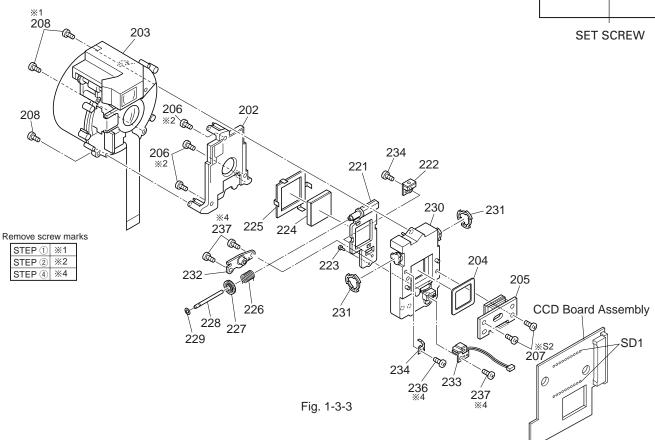
STEP	PART NAME	POINT	NOTE
1	OP Block ASSEMBLY	Remove screws 3 (208)	
2	COVER	Remove screws 3 (206),2 (207),	
	CCD BASE ASSEMBLY	1 (236)	
	SPACER	Remove screws 3(206),2(207).	
	SET PLATE	Remove the CCD Board Assy	
		20(SD1)	
3	TILT FRAME	Remove the SET RING	Note 1
	RATCH GEAR	2 (231)	Note 2
	MAIN PIN		Note 3
4	RATCH MAGNET	Remove Screws	Note 4
	NUT ASSEMBLY	3 (237),1 (236)	
	RATCH PIECE		

Note 1 Turn and fix the set ring and make sure that the convex marks are identical.



Note 2


Make sure that the torsion spring is in the groove of the latch gear.


Note 3

Turn the latch gear clockwise (() and position it so that the toothless portion comes to the level that is as high as the main frame.

Note 4Never move the setscrew in the center of the nut assembly!

1.3.4 OP BLOK Lens Compositison

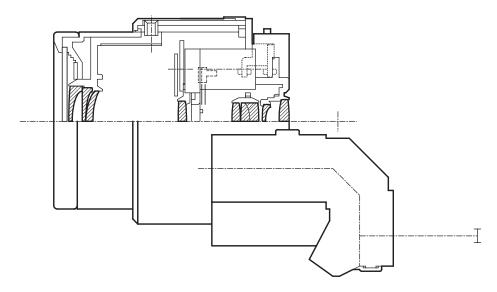


Fig. 1-3-4 Composition of GC-QX3U Lens (8-group 9-element lens composition)

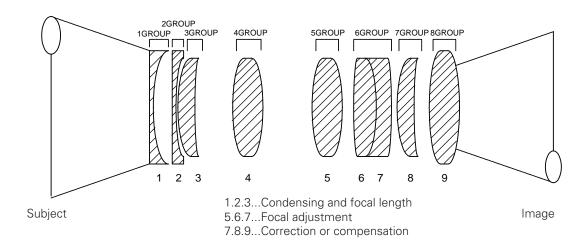
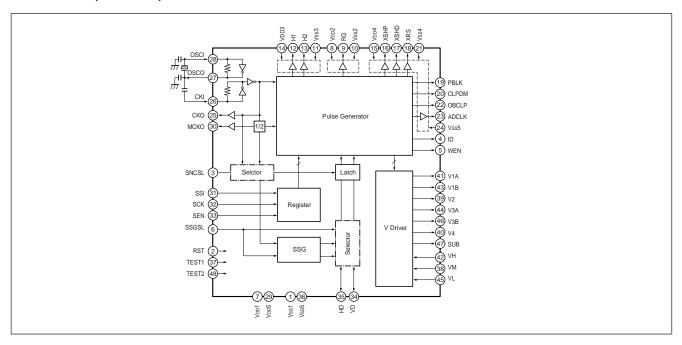
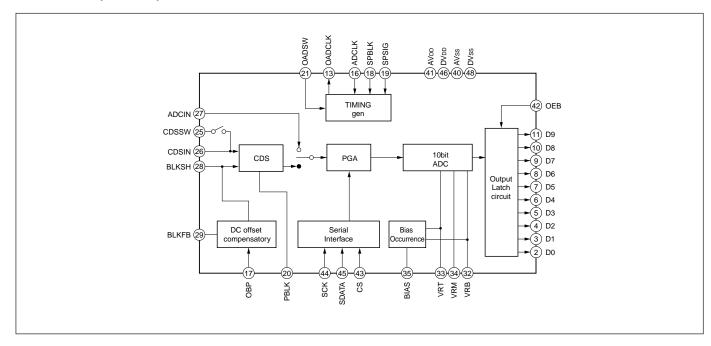



Fig. 1-3-5 8-group-9-piece lens composition

1.4 IC BLOCK DIAGRAM

1.4.1 IC 1002 (CXD2497R)

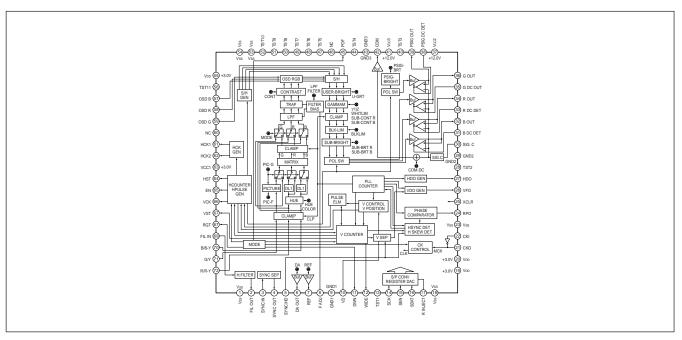


Pin Descriptions

Pin No.	Pin Name	1/0	Description	
1	Vss1	-	GND	
2	RST	Ι	System reset input terminal H: Reset released L: Reset activated	
			(Should be activated at power ON, normally.)	
			(Schmitt trigger input/without protection diode on power supply side)	
3	SNCSL	Τ	Sync system switching control input terminal	
			(with pull-down resistor)	
			H: CKI sync L: MCKO sync	
4	ID	0	Line identification pulse output terminal in the vertical direction	
5	WEN	0	Memory write timing pulse output terminal	
6	SSGSL	Ι	Built-in SSG enable input terminal (with pull-down resistor)	
			H: Built-in SSG is effective. L: External sync is effective.	
7	VDD1	-	3.3V power (for common logic section)	
8	V _{DD} 2	-	3.3V power (for RG terminal)	
9	RG	0	Reset gate pulse output terminal for CCD	
10	Vss2	-	GND	
11	Vss3	-	GND	
12	H1	0	Clock output terminal for CCD horizontal register	
13	H2	0	Clock output terminal for CCD horizontal register	
14	VDD3	-	3.3V to 5.0V power (for H1 and H2 terminals)	
15	VDD4	-	3.3V power (for CDS system terminals)	
16	XSHP	0	CCD pre-charge level sample/hold pulse output terminal	
17	XSHD	0	CCD data level sample/hold pulse output terminal	
18	XRS	0	Sample/hold pulse output terminal for phase matching in analog-to-digital conversion	
19	PBLK	0	Pulse output terminal for pulse cleaning during horizontal and vertical blanking period	
20	CLPDM	0	Pulse output terminal for CCD dummy signal clamping	
21	Vss4	-	GND	
22	OBCLP	0	Pulse output terminal for CCD optical black signal	
23	ADCLK	0	Clock output terminal for analog-to-digital conversion IC	
			Logical phase is adjustable with the serial interface data	

24	Vss5	_	GND	
25	CKO	0	Inverter output terminal	
26	CKI	T T	Inverter input terminal	
27	OSCO	0	Inverter output terminal for oscillation (If not used, should be opened or connected to GND through a capacitor.)	
28	OSCI	I	Inverter input terminal for oscillation (If not used, should be fixed to "Low".)	
29	VDD5	-	3.3V power (for common logic section)	
30	MCKO	0	System clock output terminal for signal processing IC	
31	SSI	I	Serial interface data input terminal for setting each IC mode (Schmitt trigger input/without protection diode on power supply side)	
32	SCK	I	Serial interface clock input terminal for setting each IC mode (Schmitt trigger input/without protection diode on power supply side)	
33	SEN	I	Serial interface strobe input terminal for setting each IC mode (Schmitt trigger input/without protection diode on power supply side)	
34	VD	1/0	Vertical sync signal input/output terminal	
35	HD	1/0	Horizontal sync signal input/output terminal	
36	Vss6	-	GND	
37	TEST1	I	IC test terminal 1 with pull-down resistor (Should be fixed to GND normally.)	
38	VM	-	GND (for vertical drivers)	
39	V2	0	Clock output terminal for CCD vertical register	
40	V4	0	Clock output terminal for CCD vertical register	
41	V1A	0	Clock output terminal for CCD vertical register	
42	VH	-	15.0V power (for vertical drivers)	
43	V1B	0	Clock output terminal for CCD vertical register	
44	V3A	0	Clock output terminal for CCD vertical register	
45	VL	-	-7.5V power (for vertical drivers)	
46	V3B	0	Clock output terminal for CCD vertical register	
47	SUB	0	Pulse output terminal for CCD electronic shutter	
48	TEST2	I	IC test terminal 2 with pull-down resistor (Should be fixed to GND normally.)	

1.4.2 IC 2001 (CDS/AGL)



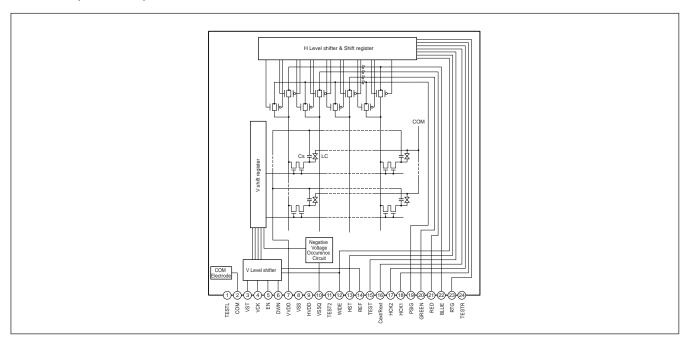
Pin Descriptions

Pin No.	Pin Name	Description		Analog (A) or Digital (D)
1	NC No internal connection		-	-
2	D0	Digital output terminal (LSB)	0	D
3-10	D1-D8	Digital output terminals	0	D
11	D9	Digital output terminal (MSB)	0	D
12	NC	No internal connection	-	-
13	OADCLK	Latch clock output terminal for D0 to D9	0	D
14	DVss	Digital GND (0V)	-	D
15	DVDD	Power for digital 3.0V system	-	D
		(Should be connected to AVDD outside the IC.)		
16	ADCLK	Analog-to-digital conversion clock input terminal	-	D
17	OBP	Optical black pulse input terminal	-	D
18	SPBLK	Black level sampling clock input terminal	-	D
19	SPSIG	Signal level sampling clock input terminal	-	D
20	PBLK	PBLK Pre-blanking signal input terminal		D
21	OADSW	ADSW OADCLK enable input terminal		D
22	AVss	Analog GND (0V)		Α
23	AVDD	Power for analog 3.0V system		Α
24	NC	No internal connection		-
25	CDSSW	Signal level sampling output terminal	0	Α
26	CDSIN	CDS input terminal		Α
27	ADCIN	ADC input terminal	-	Α
28	BLKSH	Black level sample/hold terminal	-	Α
29	BLKFB	Black level feedback terminal	-	Α
30	AVss	Analog GND (0V)	-	Α
31	AVDD	Power for analog 3.0V system	-	Α
		(Should be connected to DVDD outside the IC.)		
32	VRT	Reference voltage terminal 3	-	Α
		(Ceramic capacitor of 0.1µF or more should be		
		connected between this terminal and AVss.)		
33	VRB	Reference voltage terminal 2	-	А
		(Ceramic capacitor of 0.1µF or more should be		
		connected between this terminal and AVss.)		

34	VRM	Reference voltage terminal 1		Α
		(Ceramic capacitor of 0.1µF or more should		
		be connected between this terminal and AVss.)		
35	BIAS	Internal bias terminal	-	А
		(A 24-Kohm resistor should be connected		
		between this terminal and AVss.)		
36	NC	No internal connection	-	-
37	AVss	Analog GND (0V)	-	А
38	AVdd	Power for analog 3.0V system	-	А
		(Should be connected to DVpp outside the IC.)		
39	NC	No internal connection	-	-
40	AVss	Analog GND (0V)	-	А
41	AVdd	Power for analog 3.0V system	-	А
		(Should be connected to DVpp outside the IC.)		
42	OEB	Digital output enable control input terminal	Π	D
43	CS	Serial interface control input terminal	Π	D
44	SCK	Serial clock input terminal	П	D
45	SDATA	Serial data input terminal		D
46	DV _{DD}	Power for digital 3.0V system	-	D
		(Should be connected to AVDD outside the IC.)		
47,48	DVss	Digital GND	-	D

1.4.3 IC 7302 (CXA3268AR)

Pin Descriptions


Pin No.	Pin Name	1/0	Description	Input Res.
1	Vss	-	GND terminal for digital 3.0V system	
2	FIL OUT	0	H filter output terminal (for internal sync separator use)	
3	SYNC IN	I	Sync input terminal for sync separator circuit (for internal sync separator use)	
4	SYNC OUT	0	Sync output terminal for sync separator circuit (for internal sync separator use)	
5	CSYNC/HD	Ι	CSYNC/horizontal sync signal input terminal	
6	DA OUT	0	DAC output terminal	
7	REF	0	Level shifter circuit reference voltage output terminal for LCD panel	
8	F ADJ	0	fO adjust resistor connecting terminal for TRAP	
9	GND1	-	GND terminal for analog 3.0V system	
10	VD	Ι	Vertical sync signal input terminal	L
11	DWN	0	Up/Down switching signal output terminal	
12	WIDE	0	16:9 wide display switching pulse output terminal	
13	TST1	-	Test terminal (Should be opened.)	
14	SCK	Ι	Serial clock input terminal	
15	SEN	Ι	Serial load input terminal	
16	SDAT	Ι	Serial data input terminal	
17	R INJECT	0	Resistor connecting terminal for serial block current control	
18	Vss	-	GND terminal for digital 3.0V system	
19	VDD	-	Power for digital 3.0V system	
20	Vdd	-	Power for digital 3.0V system	
21	CKO	0	Oscillation cell output terminal	
22	CKI	Ι	Oscillation cell input terminal	
23	Vss	-	GND terminal for digital 3.0V system	
24	RPD	0	Phase comparison output terminal	
25	XCLR	I	Capacitor connecting terminal for power-on reset (for timing generating system)	Н
26	VD0	0	VDO pulse output terminal	
27	HD0	0	HDO pulse output terminal	
28	TST2	-	Test terminal (Should be connected to GND.)	
29	GND2	-	GND terminal for analog 12.0V system	
30	SIG.C	Ι	DC voltage adjust terminal for R, G, B and PSIG outputs	
31	B DC DET	0	Capacitor connecting terminal for B signal's DC voltage feedback circuit	
32	B OUT	0	B signal output terminal	
33	R DC DET	0	Capacitor connecting terminal for R signal's DC voltage feedback circuit	
34	R OUT	0	R signal output terminal	
35	G DC DET	0	Capacitor connecting terminal for G signal's DC voltage feedback circuit	

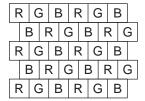
1				
36	G OUT	0	G signal output terminal	
37	Vcc2	-	Power for analog 12.0V system	
38	PSIG DC	0	Capacitor connecting terminal for G signal's DC voltage	
	DET		feedback circuit	
39	PSIG OUT	0	PSIG output terminal	
40	TST3	-	Test terminal (Should be opened.)	
41	Vcc3	-	Power for analog 12.0V system COM (CS)	
42	COM	0	Common electrode voltage output terminal (CS) for LCD panel	
43	GND3	-	GND terminal for analog 12.0V system COM (CS)	
44	TST4	-	Test terminal (Should be opened.)	
45	P0F	0	LCD panel power ON/OFF terminal	
			(Open, if this function is not used.)	
46	NC	-	No internal connection	
47	TST5	-	Test terminal (Should be connected to GND.)	
48	TST6	-	Test terminal (Should be connected to GND.)	
49	TST7	-	Test terminal (Should be opened.)	
50	TST8	-	Test terminal (Should be opened.)	
51	TST9	-	Test terminal (Should be opened.)	
52	TST10	-	Test terminal (Should be opened.)	
53	Vss	-	GND terminal for digital 3.0V system	
54	Vss	-	GND terminal for digital 3.0V system	
55	VDD	-	Power for digital 3.0V system	
56	TST11	-	Test terminal (Should be connected to GND.)	
57	OSD B	Ι	OSD B input terminal	
58	OSD R	Ι	OSD R input terminal	
59	OSD G	Ι	OSD G input terminal	
60	NC	-	No internal connection	
61	HCK1	0	H clock pulse 1 output terminal	
62	HCK2	0	H clock pulse 2 output terminal	
63	Vcc1	-	Power for analog 3.0V system	
64	HST	0	H start pulse output terminal	
65	EN	0	EN pulse output terminal	
66	VCK	0	V clock pulse output terminal	
67	VST	0	V start pulse output terminal	
68	RGT	0	Right/Left switching signal output terminal	
69	FIL IN	Ι	H FILTER input terminal (for internal sync separator use)	
70	B/B-Y	Τ	B/B-Y signal input terminal	
71	G/Y	Т	G/Y signal input terminal	
72	R/R-Y	Ι	R/R-Y signal input terminal	

^{*} DWN: <u>DOWN</u> SCAN and UP SCAN H: Pull-up resistor incorporated

RGT: <u>RIGHT</u> SCAN and LEFT SCAN L: Pull-down resistor incorporated

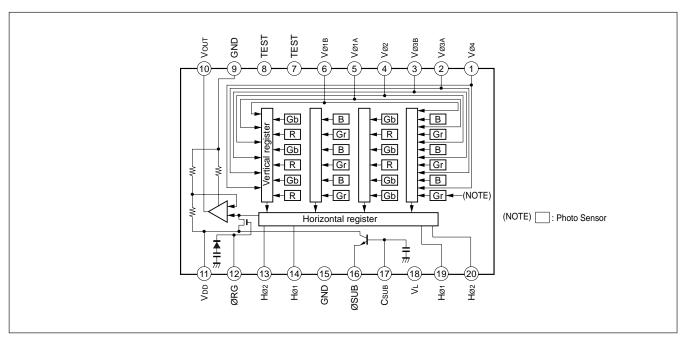
1.4.4 LCD (ACX301AK)

Pin Descriptions


Pin No.	Pin Name	Description
1	TESTL	Panel testing terminal (Should be opened.)
2	COM	Common electrode voltage input terminal for panel
3	VST	Start pulse input terminal for V shift register drive
4	VCK	Clock input terminal for V shift register drive
5	EN	Enable signal input terminal for gate select pulse
6	DWN	Drive direction signal input terminal for V shift register
7	VVDD	Power for V driver
8	Vss	GND for H and V drivers
9	HVdd	Power for H driver
10	VSSG	Negative voltage setting terminal for V driver
11	TEST2	Connected to GND through a 1-Mohm resistor in the panel
12	WIDE	Pulse input terminal for 16:9 mode
13	HST	Start pulse input terminal for H shift register drive
14	REF	Level shifter circuit reference voltage input terminal
15	TEST	Panel testing terminal (Should be opened.)
16	Cext/Rext	Power input terminal for setting H shift register drive time constant
17	HCK2	Clock input terminal for H shift register drive
18	HCK1	Clock input terminal for H shift register drive
19	PSIG	Uniformity improving signal input terminal
20	GREEN	Video signal (G) input terminal for the panel
21	RED	Video signal (R) input terminal for the panel
22	BLUE	Video signal (B) input terminal for the panel
23	RGT	Drive direction signal input terminal for H shift register
24	TESTR	Panel testing terminal (Should be opened.)

Features

- Device Structure
 - Active matrix panel with internal driver using low-temperature polysilicon transistors
 - Pixels


Total dots: 896 (H) x 230 (V) =206,080 Display dots: 880 (H) x 228 (V) =200,640 (2.0 in.)

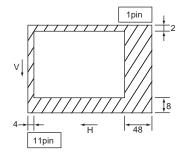
- Total dots: 200,000 dots 5.1cm diagonal (2.0 in.)
- Horizontal resolution: 440 TV scanning lines
- Light permeability: 5.6% (standard)
- Smooth screen image with RGB delta array
- NTSC/PAL compatible
- High image quality internal circuitry
- 16:9 screen display function
- Low-reflection screen display processing assures easy viewing even outdoors
- Anti-grime display

Delta array

1.4.5 CCD (ICX262AQ)

Pin Descriptions

Pin No.	Pin Name	Description
1	Vø4	Vertical register transfer clock
2	Vø3A	Vertical register transfer clock
3	Vø3B	Vertical register transfer clock
4	Vø2	Vertical register transfer clock
5	Vø1A	Vertical register transfer clock
6	Vø3B	Vertical register transfer clock
7	TEST	Test terminal*1
8	TEST	Test terminal*1
9	GND	GND
10	Vout	Signal output
11	Vdd	Circuit power
12	øRG	Reset gate clock
13	Hø2	Horizontal register transfer clock
14	Hø1	Horizontal register transfer clock
15	GND	GND
16	øSUB	PCB clock
17	Csub	PCB bias*2
18	VL	Protection transistor bias
19	Hø1	Horizontal register transfer clock
20	Vø2	Horizontal register transfer clock


- *1: Terminal should be opened.
- *2: A $0.1\mu F$ capacitor should be connected between the pin and GND, since the DC bias is generated inside the CCD.

Features

- Field period readout system
- Interline CCD image sensor
- Total number of pixels: 2140 (H) x 1560 (V) approx. 3340k pixels
- Number of effective pixels: 2088 (H) x 1550 (V) approx. 3240k pixels
- Effective number of pixels: 2080 (H) x 1542 (V) approx. 3210k pixels (1.18in)
- Chip size: 8.10mm (H) x 6.64mm (V)
- Unit cell size: 3.45m m (H) x 3.45m m (V)
- Optical black:

Horizontal (H) direction: front 4 pixels, rear 48 pixels Vertical (V) direction: front 8 pixels, rear 2 pixels

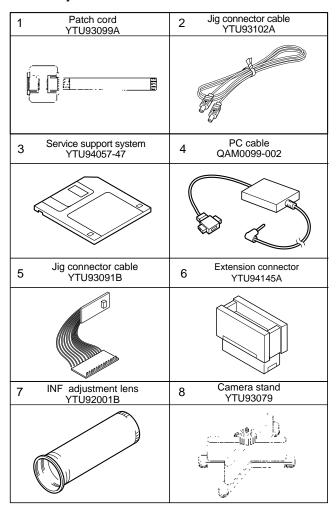
- Number of dummy bits: Horizontal 28 Vertical 1 (even fields only)
- Square pixels
- Horizontal drive frequency: 18kHz
- RGB basic color mosaic on-chip color filter
- High sensitivity
- Cyclic, variable speed shutter
- Excellent anti-blooming characteristics

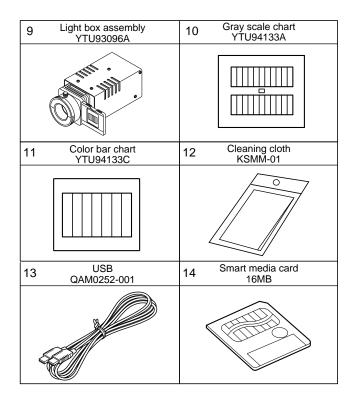
Optical black wiring diagram (Top View)

SECTION 2 ELECTRICAL ADJUSTMENT

2.1 ELECTRICAL ADJUSTMENT

2.1.1 Precautions


Both the camera section and deck section of this model are designed and manufactured to be adjustment-free. However, if both or either of the following parts is replaced, it needs special adjustment with a personal computer at a JVC service equipment after the part replacement


- OP block assembly
- EEPROM (on the MAIN board)

When there is some trouble in the electric circuit, it is required to detect the faulty part with specified test instruments first and then to proceed to repair, replacement and adjustment.

- When cheking a signal at a chip test point, be sure to use an IC clip or the like not to apply any stress to the test point. When replacing a chip part (IC in particular), completely remove solder chips from it and its periphery before proceeding to part replacement (in order to avoid exfoliation of the pattern).
- Carefully disconnect/connect connectors because they are apt to get damaged.

2.1.2 Test instruments required for electrical adjustment

2.1.3 Required test equipment

- 1. Color TV monitor.
- 2. AC power adapter (AA-V37 or equivalent)
- 3. Oscilloscope (dual-trace type, for more than 20 MHz).
- 4. Digital voltmeter
- 5. Frequency counter (with threshold level adjuster)
- 6. Personal computer

2.1.4 Setup (LCD ADJUSTMENT)

Setup for electrical adjustment with personal computer

Note 1: As a general rule for adjustment with a personal computer, connect a personal computer to its PRINTER terminal.

Note 2: Use DC cord to supply the power.

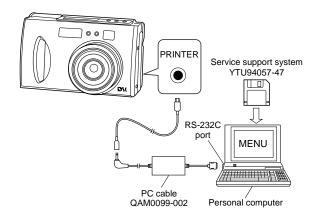


Fig. 2-1-1 Setup for electrical adjustment with personal computer (I)

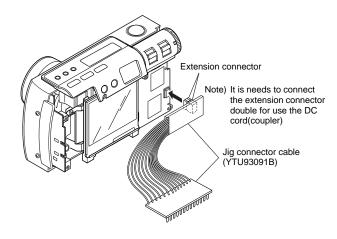


Fig. 2-1-2 Setup for electrical adjustment with personal computer (II)

Pin No.	FUNCTION			
1	135TMS			
2	135TDI			
3	nTRST			
4	AL_3.3V			
5	32DBI			
6	GND			
7	M_COM			
8	M_SIG_C			
9	M_RED			
10	M_SIG_GND			
11	JTAGMODE			
12	135TD0			
13	135TCK			
14	AL_3.3V			
15	32RST			
16	M_BLUE			
17	RPD			
18	M_PSIG			
19	M_GREEN			
20	NC			

Table 2-1-1 Jig Connector Function

2.1.5 Setup (CCD ADJUSTMENT)

Setup for electrical adjustment with personal computer

Note 1: As a general rule for adjustment with a personal computer, connect a personal computer to its DIGITAL terminal.

Note 2: Use DC cord to supply the power.

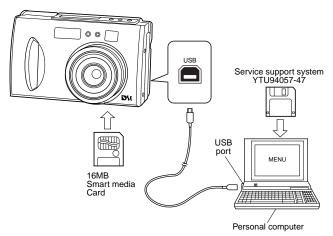


Fig. 2-1-3 Setup for electrical adjustment with personal computer (I)

2.2 Setup with patch cords and jig connector cables

Note:

Fig. 2-2-1 shows an example of expansion setup that facilitates inspection of major boards because main components are connected by means of patch cords and jir cables. For proceeding to electrical adjustment in such the setup, disassemble the set at certain level required for the current adjustment objectives referring to the section 1 "DISASSEMBLY" and properly set up the expanded set and test instruments.

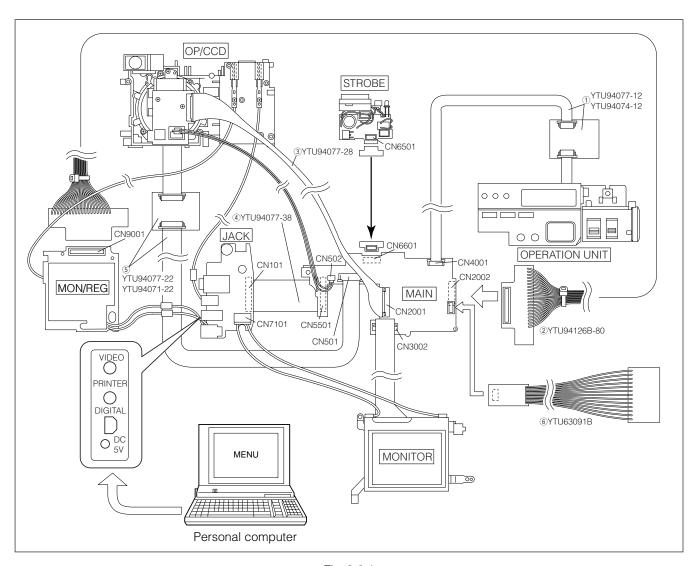


Fig. 2-2-1

	Connection					Parts Number		
1	MAIN CN4001	←→ OPRATION UNIT		12	YTU94077-12	FPC wire		
						YTU94074-12	FPC CN.ASSY	
2	MAIN	←→	MON/REG	CN9001	80	YTU94126B-80	B TO B CN.ASSY	
3	MAIN CN2001	← →	CCD	CN1001	28	YTU94077-28	FPC wire	
4	MAIN CN5501	← →	JACK	CN101	38	YTU94077-38	FPC wire	
(5)	MAIN CN501	←→	OPUNIT		22	YTU94077-22	FPC wire	
						YTU94074-22	FPC CN.ASSY	
6	MAIN CN2202	←→			20	YTU93091B	JIG CN.cable	

JVC SERVICE & ENGINEERING COMPANY OF AMERICA DIVISION OF JVC AMERICAS CORP.

 Head office
 : 1700 Valley Road Wayne, New Jersey 07470-9976
 (973)315-5000

 East Coast
 : 10 New Maple Avenue Pine Brook, New Jersey 07058-9641
 (973)396-1000

 Midwest
 : 705 Enterprise Street Aurora, Illinois 60504-8149
 (630)851-7855

 West Coast
 : 5665 Corporate Avenue Cypress, California 90630-0024
 (714)229-8011

 Atlanta
 : 1500 Lakes Parkway Lawrenceville, Georgia 30043-5857
 (770)339-2582

 Hawaii
 : 2969 Mapunapuna Place Honolulu, Hawaii 96819-2040
 (808)833-5828

JVC CANADA INC.

Head office: 21 Finchdene Square Scarborough, Ontario M1X 1A7(416)293-1311Montreal: 16800 Rte Trans-Canadienne, Kirkland, Quebec H9H 5G7(514)871-1311Vancouver: 13040 Worster Court Richmond, B.C. V6V 2B3(604)270-1311

S40895-03

